
DTR FILE COPY (1

LO FMASSACHUSETTSLABORATORY FOR t INSTITUTE OF
COMPUTER SCIENCE L TECHNOLOGY

MIT/LCS/TM-422

MULTIVALUED
04 POSSIBILITIES MAPPINGS~N

DTIC
ftELECTE RSEP 05 199o1

Nancy A. Lynch

DirP1t1MON S'rATmE?= A
pproved for pub retea -1

Tf U ,,--= tn 1Ted

August 1990

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

90 09 " 014



Unclassified

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Unclassified
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT

Approved for public release; distribution
2b. DECLASSIFICATION /DOWNGRADING SCHEDULE is unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

MIT/LCS/TM 422 N0014-85-K-0168/N00014-83-K-0125

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(if applicable)

MIT Lab for Computer Science Office of Naval Research/Dept. of Navy

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

545 Technology Square Information Systems Program
Cambridge, MA 02139 Arlington, VA 22217

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)
DARPA/DOD I

8c. ADDRESS (City, State, and ZIPCode) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT

1400 Wilson Blvd. ELEMENT NO. NO. NO. ACCESSION NO.
Arlington, VA 22217 I

11. 1ITLE (Include Security Classification)

Multivalued Possibilities Mappings

12. PERSONAL AUTHOR(S)
•, anr;l A. T.vnc

13a. TYPE OF REPORT 13b. TIME COVERED 114. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT
Technical FROM TO I August 1990 I33

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessiry and identify by block number)

FIELD I GROUP I SUB-GROUP I Abstraction mapping, mapping, possibilities mapping, safet

property, Alternating Bit Protocol, transaction processing,

, garbage collection, distributed algorithms, time bounds, hl toi

19. ABSTRACT (Continue on reverse if necessary and identify by block number) variables.

Abstraction mappings are one of the major tools used to construct correctness proofs
for concurrent algorithms. Several examples are given of situations in which it is useful
to allow the abstraction mappings to be multivalued. The examples involove algorithm
optimization, algorithm distribution, and proofs of time bounds.

Keywords: Abstraction mapping, mapping, possibilities mapping, safety property, Al-
ternating Bit Protocol, transaction processing, garbage collection, distributed algorithms,
time b nds, history variables

20. DISTRIBUTION/AVAILABILITv OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
CR UNCLASSIFIED/UNLIMITED 0 SAME AS RPT. C DTIC USERS Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL
Carol Nicolora (617) 253-5894

DD FiCRM 1473, 84 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete

*U GowM Pflajw Ofm of-iw 447
Unclassified



Accesion For

Multivalued Possibilities Mappings * TiS C A, I
DTIC TAb I,
Uaannounc: 2

Nancy A. Lynch Justificatio,
Laboratory for Computer Science -

MIT _ _

Cambridge. MA 02139 Distribution/

Availabilo\

July 30, 1990 Avail
'D, Dist Spo'

Abstract

Abstraction mappings are one of the major tools used to construct correctness proofs
for concurrent algorithms. Several examples are given of situations in which it is useful
to allow the abstraction mappings to be multivalued. The examples involove algorithm
optimization, algorithm distribution, and proofs of time bounds.

Keywords: Abstraction mapping, mapping, possibilities pping, safety property, Al-
ternating Bit Protocol, transaction processing, garbage c ection, distributed algorithms,
time bounds, history variables

/ 1 Introduction V

Abstraction mappings are one of.he major tools that my-colleagues-and-I use t construct
correctness proofs for concurrent (ijcluding 4istributed) algorithms. In this paper, il try to
make one major point about such inappings that it is useful to allow them to be multivalued.
That is, often when one maps a "low-levelj algorithm L to a I high-leveV algorithm H, one
would like to allow se:'eral states of I! to correspond to a singie state of t. I believe that any
useful framework for describing abstraction mappings shouA include t te ability to describe
multivalued mappings. ,' 7 4 .) (-

I don't know if this point is especially controversial. I have been using multivalued mappings
since I started carrying out such proofs in 1981, and the popular notion of bisimulation proposed
ay Milner [20] also permits multiple values (although bisimulation is a stronger notion than I
advocate here, slince it requiles simu.Liun ieiLionsiiips bet'ween L and H in both directions).

*This work was supported by ONR contract N0014-85-K-0168, by NSF contract CCR-8611442, and by
DARPA contract N00014-83-K-0125.



However, work on history variables, tracing its roots to [22], takes pains to avoid the use of
multivalued mappings by adding extra information to the state of L, and there are also some
recent papers (e.g., [13, 12, 1]) that restrict the notion of mapping to be single-valued.

I- will describe some situations in which multivalued abstraction mappings are useful. The
examples I consider involve

1. algorithm optimization,

2. distribution, and

3. proving time bounds.

I will illustrate the first of these situations in some detail, using one familiar example (the
Alternating Bit Protocol) and two less familiar examples, just touch on the second, and spend
the remaining time on the third - it's the newest use I have fo-oud :nd possibly the most
interesting.

In my work, abstraction mapping seem most useful for .proving safe~y properties; although
I have been involved in some work that proves liveness properties using such mappings (,eg.,
[18, 27]), these efforts are still somewhat ad hoc. Note that timing properties are more like
safety properties than like liveness properties; because of this, mappings are useful for proving
timing properties as well. In this paper, I will restrict attention to safety and timing properties.

2 A Formal Framework

To be concrete, I will describe the work in terms of I/O automata [18, 17], since that is what
I've actually used. The precise choice of model is not very important for most of what I
will discuss here (timing proofs excepted); other state machine models would probably do as
well. Here, I will review the definition of an I/O automaton and will give the usual notion of
mapping, called a possibiities mapping, that I use for defining a correspondence between I/O
automata.

Recall that an I/O automaton consists of states, start states, actions classified by a signature
as output, input and internal, and steps, which are (state, action, state) triples. So far, that
makes them rather ordinary state machines. There is a fifth component that is not normally
relevant to my work involving mappings (but that I will use in the timing example): apartition
of the output and internal actions into classes indicating which are under the controlof the
same underlying component in the system being modeled by the automaton. Its main purpose
is in describing fair executions of the automaton - executions that allow each component fair
turns to continli t.king steps. For now, I -.111 ignore t1his partitioi,.

An extended step of an automaton describes a state change that can occur as a.result.of a
finite sequence of actions.
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The important behavior of an I/O automaton is normally considered to be its interaction
with its environment, in the form of its behaviors, i.e., its sequences of input and output actions
(more precisely, its fair sequences). Problems to be solved by I/0 automata are specified as
sets of sequences of such actions, and an automaton is said to solve a problem if its (fair)
behaviors are a subset of the set of problem sequences.

Let L and H be two I/O automata with the same external action signature (same inputs
and outputs). Define a possibilities mapping from L to h to be a mapping f from states(L)
to the power set of states(H) satisfying the following properties.

1. For every start state so of L, there ig a start state u0 of H such that uo E f(so).

2. If sl is a reachable state of L, u' E f(s') is a reachable state of H and (s', ir, s) is a step
of L, then there is an extended step (u', y, u) of H such that:

(a) 7Iext(T) = 7rlext(L), and

(b) u E f(s).

The basic theorem about possibilities mappings is:

Theorem 1 If there is a possibilities mapping from L to H, then all behaviors of L are also
behaviors of H.

This theorem suggests how a possibilities mapping can be used in proving safety prop-
erties (defined here to be nonempty, prefix-closed, limit-closed properties of external action
sequences) for an automaton L. For example, a safety property P might be specified as the
set of behaviors of an automaton H. Then a possibilities mapping from L to H shows that
the behaviors of L all satisfy P. For another example, it might be possible to show that the
behaviors of an automaton H all satisfy a safety property P; then a possibilities mapping from
L to H shows that the behaviors of L all satisfy P.

Concurrent systems are modeled by compositions of I/O automata, as defined in (18, 17].
In order to be composed, automata must be strongly compatible; this means that no action
can be an output of more than one component, that input actions of one component are not
shared by any other component, and that no action is shared by infinitely many components.
The result of such a composition is another I/O automaton.

3 Algorithm Optimization

An important use of a possibilities mapping is to decompose the correctness proof for an "op-
timized" algorithm L using an "unoptimized" variation I1 as an intermediate stage. Typically,
H would be a simple and redundant algorithm that is easy to understand because it maintains
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a lot of intuitively meaningful information. The algorithm L would be less redundant, more
efficient, and correspondingly more difficult to understand. The behavior of L would be very
similar to that of H, but would be determined on the basis of less information. A good way
to correspond the two algorithms is via a multivalued mapping from L to H. The mapping
"puts back" the information that is lost in "optimizing" H; since there may not be a unique
way to do this, the mapping must be multivalued.

In this section, I give three examples. The first is a version of the well-known Alternating
Bit Protocol [4], the second an example from database concurrency control, and the third an
example from highly available replicated data management.

3.1 Alternating Bit Protocol

I begin with the Alternating Bit Protocol (ABP), mostly because it is simple and should be
familiar from other papers on verification. Although the main interest in this example is
normally the liveness properties, here I will only consider safety. The key safety property.to
be proved is, roughly speaking, that the subsequence of messages delivered is a prefix of the
subsequence sent.

3.1.1 Problem Statement

More specifically, I dofine correctness at the external boundary of the ABP component (the
data link boundary). The input actions are SEND(m), where m E M, the message alphabet.
The output actions are RECEIVE(m),m E M. The correctness property P is the -set of
sequences 8 of SEND and RECEIVE actions such that in any prefix 09' of 6, the-sequence
of messages received in /' is a prefix of the sequence of messages send in/'.

SENDW) RECEIVE(m)

3.1.2 Architecture

The architecture for an implementation consists of a sender automaton, a receiver automa-
ton, and two FIFO physical channels, channell and chann . Channell has Input actions
SEND1(m,b) and output actions RECEIVE1(m,b), where m E M and b is a Boolean.
Channel2 has input actions SEND2(b) and output actions RECEIVE2(b), where b is a
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Boolean. The system is modeled by the composition of these automata, with all actions except
SEND(m) and RECEIVE(m) hidden.

Channell

SEND(m).. RECEIVE(m)

Channel2

The channels are fairly ordinary FIFO queues, except that the effect of a SEND1 or
SEND2 action might or might not be to put the data at the end of the queue. (The effect of
a RECEIVE1 or RECEIVE2 is always to remove it, however.) More specifically, consider
channell. Its state is a finite queue of pairs (m, b), where m E M and b is a Boolean. Initially,
the queue is empty.

SEND 1(m, b), m E M, b a Boolean
Effect:

Either add (m, b) to the queue or do nothing.

RECEIVE1(m, b), m E M, b a Boolean
Precondition:

(m, b) is first on the queue.
Effect:

Remove first element from queue.

3.1.3 Alternating Bit Protocol

The ABP uses the following sender. It has inputs SEND(m), m E M and RECEIVE2(b), b
a Boolean, and outputs SEND1(m, b), m E M, b a Boolean. Its state consists of the following
components: QS, (for "sender's queue"), which holds a finite sequence of elements of M,
initially empty, and FS (for "sender's flag"), a Boolean, initially 1. The actions are:

SEND(m), m E M
Effect:

Add m to end of QS.
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SEND1(m, b), m E M, b a Boolean
Precondition:

in is first on QS.
b = FS

Effect:
None.

RECEIVE2(b), b a Boolean
Effect:

if b = FS then
[remove first element (if any) from QS;
FS:= FS + mod 2]

The corresponding receiver has inputs RECEIVE1(m, b), m E M, b a Boolean, and outputs

RECEIVE(m), m E M and SEND2(b), b a Boolean. Its state consists of the following

components. QR (for "receiver's queue"). which holds a, finite sequencs of elements-of M,

initially empty, aid FR (for "receiver's flag"), a BRoolean, intially 0. The actions are:

RECEIVE(m), m E M
Precondition:

m is first on QR.
Effect:

Remove first element from QR.

RECEIVE1(m, b), m E M, b a Boolean
Effect:

if b i FR then
[add m to end of QR;
FR:= FR + 1 mod 2]

SEND2(b), b a Boolean
Precondition:

b = FR
Effect:

None.

3.1.4 Redundant Protocol

To prove the correctness of this protocol, I describe a redundant but much easier to understand
variant of the protocol. In this ,ariant, both the sender and receiver keep scqucnc,-.s of messages
forever; furthermore, they tag the messages with positive integer sequence numbers and send.
them with those sequence numbers. The sender continues to send the same message just until

it receives an acknowledgement with that message's tag; then it goes on to t'.e next message
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in sequence. The receiver, on the other hand, keeps acknowledging the last message it has
received, just until it gets the next message. It should be easy to prove that this works,
using invariant assertions. Then the ABP can be proved to correspond to this protocol via a
possibilities mapping, and so is correct as well.

More specifically, the redundant algorithm uses a slight modification of the channels used
by the ABP - Lhe only modification is that integer tags, rather than Boolean tags, are used.
The redundant algorithm also has the same actions as the ABP (except that tag parameters
are now positive integers). Its sender's state consists of the following components. SS (for
"sender's sequence"), which holds an array of (MU .L) (where .- is a special "undefined"
indicator, which is not an element of M), indexed by the positive integers, initially identically
equal to .1, IS (for "sender's integer"), a positive integer, initially 1, and LS (for "last message
sent"), a nonnegative integer, initially 0.

The actions are:

SEND(m), m E M
Effect:

LS:= LS + 1
SS(LS) := m

SENDl(m, i), m E M, i a positive integer
Precondition:

SS(i) = m.
i = IS

Effect:
None.

RECEIVE2(i), i a positive integer
Effect:

if i = IS then
IS := IS + 1

The corresponding receiver has a Aate consisting of the following components. SR (for
"receiver's sequence"), which holds an array of (MU L1), indexed by the positive integers,
initially identically equal to -, IR (for "receiver's integer"), an integer, initially 0, and LR (for
"last message received"), an integer, initially 0. The actions are:

RECEIVE(m), m G M
Precondition:

m = SR(LR+ 1)
Effect:

LR := LR+ 1.
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RECEIVE1(m, i), m E M, i a positive integer
Effect:

if i =IR+ 1 then
(SR(i)
IR:= IR + 1J

SEND2(i), i a positive integer
Precondition:

i=IR
Effect:

None.

It should be very easy (if I have not made any stupid mistakes) to show that the resulting
algorithm correctly delivers messages, i.e., that the messages received are a subsequence of
those sent. The actual ABP is somewhat harder to understand because it does not keep al1
this information explicitly; it removes redundancies. For example, it does not keep the complete
sequences forever, but removes elements after they are no longer needed. More interestingly,
it does not tag the messages in the channels and on the remaining queues with the integer
indices, but only with bits.

For later use, I note here some basic invariants about the behavior of this redundart
algorithm. (Call this algorithm H.)

Lemma 2 The following statements are true about every reachable state of H.

1. Consider the sequence consisting of the indices in channel2, followed by IR, followed by
the indices in channell, followed by IS. The indices in this sequence are nondecreasing;
furthermore, the difference between the first and last index in this sequence is, at -most 1.

2. If IS = IR, then LS > IS.

3.1.5 Possibilities Mapping Proof

Now let L denote the ABP. We will show that L is correct by demonstrating a possibilities

mapping from L to H. Note that such a mapping needs to be multivalued - it must augment

the partial information contained in each of the two queues by filling in all earlier messages,
and must fill in the integer values of tags only working from bits.

In particular, we say that a state u of H is in f(s) for state s of L provided that the
following conditions hold.

1. s.QS is exactly the sequence of values of u.SS corresponding to indices in the closed
interval [u.IS, u.LS].
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2. s.FS = u.ISmod2.

3. s.QR is exactly the sequcrce of values of u.SR corresponding to indices in the closed
interval [u.LR+ 1,u.IR].

4. .FR = u.IR mod 2.

5. Channell has the same number of messages in s and u. Moreover, for any j, if (in, i) is
the jth message in channell in u, then (m, i mod2) is the jth message in channell in s.

6. Channel2 has the same number of messages in s and u. Moreover, for any j, if i is the
jta message in channel2 in u, then i mod 2 is the jth message in channel2 in n.

Theorem 3 f above is a possibilities mapping.

3.1.6 Remarks

Consider the structure of the possibilities mapping f of this example. In going from H to L,
unnecessary entries are garbage-collected, and integer tags are condensed to their low-order
bits. The multiple values of the mapping f essentially "replace" this information. In this
example, the correspondence between L and H can be described in terms of a mapping in the
opposite direction - a (single-valued) projection from the state of H to that of L that removes
information. Then f maps a state s of L to the set of states of H whose projections are equal
to s. While this formulation suffices to describe many interesting examples, it does not always
work, as will be seen in some of the subsequent examples in this paper.

Halpern and Zuck [10] outline a way of organizing the proof of the ABP that is similar to
the organization I have described; their proofs are presented somewhat differently, however,
using a formal theory of knowledge.

3.2 Transaction Processing

With Michael Merritt, Bill Weihl, Alan Fekete and Jim Aspnes [9, 2], I have done some work
on describing and proving the correctness of locking- and timestamp-based algorithms for
database concurrency control and recovery. Some of this work uses multivalued possibilities
mappings in a way that is similar to their use for the ABP. That is, the proofs first show
correctness of a simple and inefficient protocol that maintains a lot of extra information, and
then shows that some particular protocols of interest implement the inefficient protocol in the
formal sense of possibilities mappings.

In this work, the advantage we gain from the mapping strategy is not only the decom-
position of the proofs of particular algorithms; we also gain an advantage in generality. The
high-level protocol is designed to work for arbitrary data types. The same high-level protocol
can be used to prove the correctness of many specific low-level protocols that work (in more
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efficient ways) for particular data types such as read-write objects. (Halpern and Zuck [1C; use
mappings informally to get a similar generality for protocols related to the ABP.)

Here, I will just describe what we do for locking; our treatment oi timestamps is similar.
We develop a locking algorithm for nested transactions; in this model, transactions can have
subtransactions, and subtransactions can have further subtransactions. and so on until the
leaves of the transaction structure, which actually access data objects. The transaction nesting
structure is a forest; we augment it with a dummy "root" transaction representing the "outside
world", so that it becomes a tree. Transactions can commit (relative to their parents) or abort,
and correctness is defined in terms of serializability among each group of siblings.

Our high-level algorithm allows objects of arbitrary data type. We describe this algorithm
using a separate program (automaton) for each data object. The automaton for an object x
does all the processing involving x. It receives invocations of accesses to x and decides on the
appropriate responses to make. It maintains locks for x, together with any other necessary
information such as temporary versions. It receives information about the commit and abort
of transactions, in order to help it decide on the appropriate responses (and in order to help it
decide when it can discard information and how to manipulate locks).

The complete high-level algorithm can be described as the composition of these object au-
tomata with other automata, e.g., automata, for transactions and a message system automaton.
In [9), we prove the correctness of this composition, with a fairly complicated proof. However,
once we have proved this correctness for our high-level algorithm, we have a much easier job
for some data-type-specific variants, since we can use possibilities mappings. For example, one
very popular kind of locking algorithm is read-write locking. (In [9], we actually handle the
slightly different case of read-update locking rather than read-write locking; the difference is
that write accesses are constrained only to write the object with a predefined value, whereas
update accesses can make arbitrary changes, depending on the object's prior value.) We can
describe read-write locking as a similar composition, but with different object automata; in
particular, we can use a read-write object automaton for each object x instead of a arbitrary
data type object automaton for x. The read-write object automaton for x maintains less in-
formation than the corresponding arbitrary data type object automaton, but it can be shown
to implement the former in terms of a possibilities mapping.

Th4VOKE(T)
INFORM COMMIr(T)

locking INFORM-ABORT(T)
object-for x

'"N. RESPOND(T, Y)
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To be specific, the interface of an object automaton for x consists of input actions
INVOKE(T), INFO RMCOMMIT(T), and INFORMABOIIT(T), and output action

RESPOND(T, v). Invocations and responses are for particular accesses to x (T locates the

access within the transaction nesting structure); nforms are for arbitrary transactions.

Let H denote the arbitrary data type automaton for x. It maintains "intentions lists",
which are sequences of operations (i.e., (access,return value) pairs), for each transaction in the

entire nesting structure, initially empty everywhere. The intentions list for T describes all the

operations that are known to have occurred at descendants of T, and have committed up to

T but not to its parent. It operates as follows. (Note: This is an informal paraphrase of the

code in [9].)

INVOKE(T)
Effect:

Record the invocation.

INFORMCOMMIT(T)
Effect:

intentions(parent(T)) := intentions(parent(T))intentions(T)
intentions(T) := empty

INFORM.ABORT(T)
Effect:

intentions(U) := empty for all descendants U of T

RESPOND(T, v)
Precondition:

T has been invoked and not yet responded to.
(T,v) commutes with every (T',v') in intentions(U), where U is not an ancestor of T.
total(T)(T,v) is a correct behavior of the underlying serial data object for x.

Effect:
intentions(T) := intentions(T) (T,v)

Here, operations are said to "commute", roughly speaking, provided that in any situation
in which both can be performed, they can be performed in sequence, in either order, and the
result is the same in both cases.) Also, total(T) is defined to be the result of concatenating
all the intentions lists for ancestors of T, in order from the root down. As I said earlier, our
algorithm based on this object has a somewhat complicated proof.

Note that H maintains a good deal of explicit history information in its intentions lists.
Now suppose that the underlying serial data object is a read-write object. In this case, we
can improve the efficiency of this algorithm by maintaining more condensed, specially-tailored
data structures in place of the intentions lists. Tn particalar, we design a read-write object
automaton L that keeps sets of read lockholders and write-lockholders, plus a version of the
underlying serial object for each write-lockholder. Initially, the root holds a write-lock, with
the start state of the serial object as the associated version. The steps of L are as follows.

11



INVOKE(T)
Effect:

Record the invocation.

INFORMCOMMIT(T)
Effect:

if T is a read-lockholder, then read-lockholders := read-lockholders U{parent(T)} - {T}
if T is a write-lockholder, then

[version(parent(T)) := version(T);
write-lockholders := write-lockholders U{parent(T)} - {T}]

INFORM-ABORT(T)
Effect:

Remove all locks for descendants of T.

RESPOND(T, v), T a read
Precondition:

T has been invoked and not yet responded to.
All write-lockholders are ancestors of T.
v is the version associated with the least ancestor of T that is a write-lockholder.

Effect:
read-lockholders := read-lockholders UI{T}.

RESPOND(T, v), T a write
Precondition:

T has been invoked and not yet responded to.
All read-lockholders and write-lockholders are ancestors of T.
v = "nil"

Effect:
write-lockholders := write-lockholders U{T}
version(T) := v

The correctness of the algorithm using L follows from that of the algorithm using H once
we demonstrate a possibilities mapping f from L to H. The mapping says the following
(paraphrased): u E f(s) exactly if

1. u and s record that the same set of transactions has been invoked.

2. u and s record that the same set of transactions has been responded to.

3. s.read-lockholders is exactly the set of transaction names T such that u.intentions(T)
contains a read access.

4. s.write-lockholders is exactly the set of transaction names T such that u.intentions(T)
contains a write access (together with the root).
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5. For every T, evaluating total(T) in u results in the value version(T'), where T' is the
least ancestor of T in write-lockholders.

Although a read-write serial object is a special case of an arbitrary data type serial object,
note that the read-write object automaton L is not really a special case of the arbitrary
data type object automaton: the data structures are different, and f expresses a nontrivial
correspondence between the different structures. Howeer, the behaviors of the two ,bjects
correspond very closely, as shown by the fact that there is a possibilities mapping between
them. Note that the mapping f is multivalued, since the summary version and lock-holder
information maintained by the read-write object automaton does not (in general' illow a unique
reconstruction of the intentions list information in the arbitrary data type object automaton.

For this example, as for the ABP, the possibilities mapping can be described as the inverse
of a projection mapping states of H to states of L, but here that seems like a bit of an
accident. For, the read-update objects described in [9] have a similar description and proof,
but the mapping used there can associate more than one state of L to a state of H. (This is
because the serial object state produced by a sequence of operations might not be uniquely
determined.)

Although we have not worked this out, it should be possible to describe optimized variants
of our high-level algorithm for other specific data types besides read-write objects and read-
update objects. I expect that such optimizations should also be verifiable using possibilities
mappings to our high-level objects.

Our treatment of timestamp-based concurrency control algorithms in [2] is analogous to our
treatment of locking. Namely, we first present an algorithm for arbitrary data types (based on
that of Herlihy [11], but extended to nested transactions); we present this using an automaton
for each object. Then we present the specially-tailored algorithm of Reed [23] for read-write
objects; correctness of this algorithm is proved using possibilities mappings to the algorithm
for arbitrary data types.

3.3 Garbage Collection

With Paul Leach, Liza Martin and Joe Pato at Apollo Computer, I have made use of multival-
ued possibilities mappings to design and prove correctness of an algorithm for replicated data
management. Again, the use involves decomposing the algorithm using a higher-level and less
efficient algorithm. I'll just sketch the ideas very roughly and informally here.

The setting we consider involves a replicated data management algorithm in which updates
to data objects can be issued at arbitrary nodes. We assume a timestamp mechanism that
totally orders all updates produced anywhere in the system. Here I assume for simplicity that
- L - updates are ovci iitu. In ddb buting, nudeb excaiange inforumation about all the upddte
that have been generated, so (if the network stays connected), all nodes eventually find out
about all updates. (Other transactions, which I will not discuss here, read the data produced
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by this algorithm and take actions based on it.) We assume that the network is dynamic, i.e.,
that nodes can be added to and removed from the system during execution. The setting is
similar to those considered in [6, 24, 8]. In order to determine whether an incoming update
should supersede an already-known update for the same object, a node must maintain some
timestamp information for known updates. Because it would be inefficient to keep the complete
history of known updates, nodes summarize this history information in a "checkpoint state"
that contains summarized values (with associated timestamps) for all objects. But because
of the way nodes exchange information about updates, they also maintain some incremental
information; the data maintained by each node is thus a combination of a checkpoint state and
a log of recei updates. The complete algorithm can be proved correct by standard techniques
(basically, the safety properties to be proved say that each node is as up-to-date about the
updates originating at each other node as it thinks it is).

Now, the actual system has another complication - we would like to garbage collect infor-
mation about objects whose latest update is an "overwrite(x,nil)", i.e., a "delete(x)". It would
be nice not to have to record this update forever (with its associated timestamp). But it is
necessary to record it for a while, in order to correctly determine its timestamp ordering with
respect to incoming updates of x. We need a criterion that tells us when we may garbage
collect such information without affecting the behavior of the algorithm. It is quite nontrivial
to determine such a rule, especially in the case we consider, where nodes can be added or
removed during computation; E.g., one must ensure that updates issued by newly-added nodes
can never get ordered incorrectly with respect to the garbage collected updates.

We have designed an algorithm, L, that includes a local criterion that says when it is
safe for - node to garbage collect a delete update. The final algorithm appears to be fairly
complicated. It turns out that the best way to understand it is by means of a possibilities
mapping from L to the original ion-garbage collected algorithm, H. Starting with a state s
of L, this possibilities mapping obtains corresponding states of H by adding in information
about the missing updates in all possible ways that are consistent with the current remaining
state. Of zourse, there may be many ways to add in such information; thus, the mapping is
multivalued. With this correspondence, the correctness proof for the algorithm with garbage
collection seems fairly straightforward (although it seemed to us to be quite difficult otherwise).

Note that unlike the two previous examples, this example uses a correspondence that is
not expressible as a projection from H to L - here, several L states could also be related to
a single H state. That is, given a state of the non-garbage collected algorithm, it is possible
to choose the information to garbage collect in many different ways. (Choices of updates to
garbage collect are made locally at individual nodes, and asynchronously with respect to the
choices made at other nodes.) Thus, in this case, the correspondence is multivalued in both
directions.
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3.4 Remarks

The idea of decomposing algorithms using unoptimized but simpler variants and possibilities

mappings seems to be a very generally useful technique. It is useful for algorithms that

perform explicit garbage collection, and also for algorithms such as the ABP, that simply omit

unused portions of the simpler information. I think that this idea can be pushed much further

in the area of distributed algorithms; many clever and complicated algorithms should have

decompositions using simpler variants containing extra information. ror example, I wonder
whether the many complicated algorithms for implementing atomic registers (e.g., [25, 15]) can
be verified in this way. It seems to me that at least Bloom's special-case algorithm [7] should
have a nice proof in terms of integer tags rather than bits; perhaps a similar strategy will work
for other atomic registel algorithms.

Note that all the proofs I have given in this section could be recast in terms of history vari-
ables added to the low-level algorithms and single-valued rather than multivalued mappings.
Thus, although the proofs in terms of multivalued mappings seem more natural to me, there
is no theorem that says that multivalued mappings are necessary.

4 Distribution

Another way that multivalued mappings arise is in describing algorithm distribution rather
than optimization. In the setting I have in mind, a centralized algorithm H (one not explicitly
decomposed into nodes and a message system) is first shown to solve the problem of interest. A
related distributed algorithm (one that is described explicitly as the composition of a number
of node automata and one or several automata representing the message system) L is then
given; we want to show that L is correct by showing that it implements H (that is, that all its
behaviors are behaviors of II).

The basic strat.gy is again to define a mapping f from states of L to sets of statps of H.
However, in this case it may be helpful to define f in terms of a collection of "component
mappings" f,, one for each component of L. Thus, each node i has an abstraction mapping
that maps each of its states to a set of states of 1I, and likewise the message system M, (or
each separate message channel Al, if there are several) has a mapping fm from its states to a
set of states of II.

H

L\5 M6bb
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These component mappings have an interesting interpretation - e.g., the mapping fi for
node i describes, in terms of i's state, the "possible states" of the centralized algorithm H,
as far as i can tell. Thus, in a sense, this mapping can be thought of as giving the "local
knowledge" that i has, of the state of the centralized algorithm.

Under certain conditions ([1, 14]) these component mappings can be "composed" to yield
a possibilities mapping from each entire state of L to a set of states of H, representing the
"possible states" of H, as far as any of the components can tell. Formally, the value of f(s),
for a sta~e s of L, is exactly the intersection of the values of fi(si), where si is component i's
state in s. That is, the states that are possible for all the components are just those that are in
the intersection of the sets that are possible for all the individual components. In other words,
the intersection of the local knowledge of all the components (including the message system)
is the global knowledge of the system.

Note that the mapping f might or might not be multivalued, but the individual fi almost
certainly will be. This is because in a typical distributed system, no individual node knows
everything about the global state.

This decomposition can sometimes be used to simplify algorithm proofs (at least, it has
worked in one substantial case I have tried). This case again arises in transaction processing.
In [19], I describe a locking algorithm similar to.the read-write locking algorithm I described
earlier in this paper, by first giving a centralized description. The algorithm H keeps global
information such as the sets of transactions that have been created, committed and aborted,
plus certain "version mappings" that keep versions of various objects on behalf of various
transactions. In the distributed algorithm, each node keeps part of this information: it knows
some of the created, committed and aborted transactions, and some of the versions. The
mapping f, for a node i just adds in unspecified other transactions and versions to these sets,
in addition to the ones locally known. I prove correctness of H directly, then combine the
fi as described above to get a possibilities mapping f and prove correctness of L using this
mapping.

More work is needed to determine how generally useful this proof structure is.

5 Proving Time Bounds

My final example arises in my very recent work (joint with Hagit Attiya) on timing-based
algorithms. The idea is to use multivalued mappings for reasoning about upper and lower
bounds on -me for such algorithms. Although this work is still preliminary, I think that its
use of multivalued mappings is quite interesting.

5.1 Overview

So iar, abstraction mappings (and assertional reasoning in general) have been used primarily
to prove correctness properties of sequential algorithms and synchronous and asynchronous
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concurrent algorithms. It would also be nice to use these techniques to prove properties of
concurrent algorithms whose operation depends on time, e.g., that have a clock that ticks at
an approximately predictable rate. Also, the kinds of properties usually proved using mappings
are "ordinary" safety properties; it ,vould also be nice to use similar methods for proving timing
properties (upper and lower bounds on time) for algorithms that have timing assumptions.

Here, I show how abstraction mappings can be used to prove timing properties of timing-
dependent concurrent algorithms. I'll focus on a trivial example, an algorithm consisting of two
concurrently-operating components, which we call a clock and a manager. The clock ticks at an
approximately known rate. The manager monitors the clock ticks, and after a certain number
have occurred, it issues a GRANT (of a resource). It then continues counting ticks; whenever
sufficiently many have occurred since the previous GRANT event, the manager issues another
GRANT. We wish to give a careful proof of upper and lower bounds on the amount of time
prior to the first GRANT event and in between each successive pair of GRANT events.

In order to state and prove such results, we need to extend the I/O automaton model to
incorporate time in the assumptions and in the conditions to be proved. Fortunately, this has
been done for us: Modugno, Merritt and Tuttle [21] define a suitable extension call the timed
automaton model. In that model, an algorithm with timing assumptions is described as an
I/O automaton together with a boundmap (a construct used to give a formal description of the
timing assumptions). This automaton and boundmap generate a set of timed executions and a
corresponding set of timed behaviors. We use timed automata to define the basic assumptions
about the underlying system, to describe the algorithm, and to carry out a correctness proof.

In order to carry out an assertional proof about time, we need to reformulate some of
the definitions of [21] so that information about time is explicitly included in the algorithm's
state. In order to include assumptions about time in the state, we use the construction given
in [3], of an automaton time(A) for a given timed automaton A. The automaton time(A) is an
ordinary I/O automaton (not a timed automaton) whose state includes predictive information
describing the first and last times at which various basic events can next occur; this information
is derived from the given boundmap. The I/O automaton time(A) is related to the original
timed automaton A in that a certain subset of the behaviors of time(A) is exactly equal to the
set of timed behaviors of A.

We also require a formal way of describing the timing requirements to be proved for our
algorithm. In order to do this, we augment A to another I/O automaton B which we call the
performance machine this time building in predictive information about the first and last times
at which certain events of interest (e.g., GRANT events) can next occur. Then the problem
of showing that the given algorithm satisfies the timing requirements is reduced to that of
showing that any behavior of the automaton time(A) is also a behavior of B. We do this by
exhibiting a mapping from time(A) to B. This mapping turns out to be multivalued; in fact,
it is i 'be form of a set of inequalities!

In the remainder of this section, 1 give more details.
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5.2 Formal Model

Here I describe timed automata and the construction of time(A).

5.2.1 Timed Automata

Recall that an I/0 automaton consists of actions, 3tates, start states, steps, and a fifth compo-
nent that is a partition of the locally controlled (output and internal) actions into equivalence
classes. The last is generally used for fairness and liveness, and so I have not used it so far
in this paper, but I will need it now. The partition groups actions together that are to be
thought of as under the control of the same underlying process.

In [21], the I/O automaton model is augmented to include timing properties as follows. A
timed automaton is an I/O automaton with an additional component called a boundmap. The
boundmap associates a closed interval of the nonnegative reals (possibly including infinity, but
where the lower bound is not infinity and the upper bound is not 0) with each class in the
automaton's partition. This interval represents the range of possible lengths of time between
successive times when the given class gets a chance to perform an action. Let bt(C) and b.(C)
denote the lower and upper bounds, respectively, assigned by the boundmap b to class C.

Now I describe how a timed automaton executes. A timed sequence is a sequence of alter-
nating states and (action,time) pairs; the times are required to be nondecreasing, and if the
sequence is infinite then the times are also required to be unbounded. Such a sequence is said
to be a timed execution of a timed automaton A provided that the result of removing the time
components is an execution of the ordinary I/O automaton underlying A, and the following
conditions hold, for each class C of the partition of A and every i.

1. Suppose b,(C) 0 oo. If some action in C is enabled in ai and either i = 0 or no action
in C is enabled in ai-1 or -ri is in C, then there exists j > i with t(j) t(i) + b,(C) such
that either irj is in C or no action of C is enabled in aj.

2. If some action in C is enabled in ai and either i = 0 or no action in C is enabled inL ai-1
or 7ri is in C, then there does not exist j > i with t(j) < t(i) + be(C) and irj in C.

The first condition says that, starting from when an action in C occurs or first gets enabled,
within time bu(C) either some action in C occurs or there is a point at which no such action
is enabled. The second condition says that, again starting from when an action in C occurs or
first gets enabled, no action in C can occur before time bt(C) has elapsed.

Definitions for composition of timed automata to yield another timed automaton are given
in [21]. We model real-time systems as compositions of timed automata.
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5.2.2 The Automaton time(A)

Given any timed aatoinaton A %ith boundmap b, we now show how to define the corresponding
ordinary I/0 automaton time(A). This new automaton has the timing restrictions of A built
into its state, in the form of predictions about when the next event in each class will occur.

The automaton time(A) has actions of the form (r, t), where 7r is an action of A and t is
a nonnegative real number. Each of its states consists of a state of A, augmented with a time
called Ctime and, for each class C of the partition, two times, Ftime(C) and Ltime(C). Ctime,
(the "current time") represents the time of the last preceding event, initially 0. The Ftime(C)
and Ltime(C) components represent, respectively, the first and last times at which an action
in class C is scheduled to be performed (assuming it stays enabled). (We use record notation
to denote the various components of the state of time(A); for instance, s.automaton-state
denotes the state of A included in state s of time(A).) More precisely, each initial state
of time(A) consists of an initial state s of A, plus Ctime = 0, plus values of Ftime(C)
and Ltime(C) with the following properties. If there is an action in C enabled in s, then
s.Ftime(C) = s.Ctime + be(C) and Ltime(C) = s.Ctime + bu(C). Otherwise, Ftime(C) = 0
and Ltime(C) = oo.

Others have proposed building timing information into the state (e.g., [26]); our work differs
in the particular choice of information to use - predictive information, giving upper and lower
bounds for each automaton class.

The following definitions capture formally what it means for the given timing assumptions
to be respected by time(A). If (ir, t) is an action of time(A), then (s', (7r, t), s) is a step of
time(A) exactly if the following conditions hold

1. (s'.automaton-state, 7r, s.automaton-state) is a step of A.

2. s'.Ctime < t = s.Ctime.

3. If ir is a locally controlled action of A in class C, then

(a) s'.Ftime < t < s'.Ltine.
(b) if some action in C is enabled in s.automatonstate, then

s.Ftime(C) = t + be(C) and s.Ltime(C) = t + bu(C), and

(c) if no action in C is enabled in s.automaton-state, then s.Ftime(C)= 0 and
s.Ltime(C) = 0o.

4. For all classes D such that 7r is not in class D,

(a) t < s'.Ltime(D),
(b) if some action in D is enabled in s.automaton-state and some action in D is en-

abled in s'.automaton-state then s.Ftime(D) = s'.Ftime(D) and s.Ltime(D) =
s'.Ltime(D), and
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(c) if some action in D is enabled in s.automaton-state and no action in D is enabled
in s'.automaton-state then s.Ftime(D) = t + be(D) and s.Ltime(D) = t + b,(D),
and

(d) if no action in D is enabled in s.automatonstate, then s.Ftime(D) = 0 and
s.Ltime(D) = oo.

Property- 3 describes the conditions on the particular class C (if any) containing the action
r - basically, that the time for the new action should be in the appropriate interval for the
class. New scheduled times are also set for C, in case an action in C is enabled after this
step. Property 4 describes conditions involving each other class D. The most interestingis
property 4(a), which ensures that the action in C does not occur if D has an action that must
be scheduled first.

Now I state how the behaviors of time(A) are related to the timed behaviors of A. Define
the complete executions of time(A) to be those executions a of time(A) that satisfy one ofthe
following conditions.

1. a is infinite and the time components of the actions in a are unbounded, or

2. a is finte ard - locally controlled action of time(A) is enabled in the final state of a.

The complete schedulCs z.nd complete behaviors of time(A) are defined to be the schedules and
behaviors, respectively, of complete executions of time(A).

The timed executions of a timed automaton A are closeiy related to the complete executions
of the corresponding I/O automaton time(A). In particular, what we use is:

Theorem 4 The set of timed behaviors of A is the same as the set of complete behaviors of
time(A).

This theorem implies that properties of timed behav.,ors of a timed automaton A can be
proved by proving them about the set of complete behaviors of the corresponding I/O au-
tomaton time(A). The latter task is more amenable to treatment using assertional techniques,
becaube of the fact that timing information is built into the state of time(A).

We apply the time(A) construction to the timed automaton A modeling the entire system.

5.2.3 Strong Possibilities Mappings

The work in this section requires a slightly strengthened notion of possibiities mapping - one
that preserves the correspondence between all actions (internal as well as external). Let T, and
H be automata with the same actions, and let f be a mapping from states of L to sets of
states of H. The mapping f is a strong possibilities mappings from L to H provided that the
following conditions hold:
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1. For every start state 3o of L, there is a start state u0 of H such that uo E f(so).

2. If s' is a reachable state of A, u' E f(s') is a reachable state of H, and (s', 7r, s) is a step
of L, then there is a step (u/, 7r, u) of H such that u E f(s).

The difference between this definition and the ordinary definition for possibilities mappings
is in the second condition, where the actions are required to correspond exactly. Now recall
that the schedules of an automaton include all its actions.

Lemma 5 If there is a strong possibilities mapping from L to H, then all schedules of L are
also schedules of H.

5.3 The Algorithm

The algorithm consists of two components, a clock and a manager. The clock has only one
action, the output TICK, which is always enabled, and has no effect on the clock's state. It
can be described as the particular one-state automaton with the following steps.

TICK
Precondition:

true
Effect:

none

The boundmap associates the interval [Cl, c2] with the single class of the partition. This
means that successive TICK events will occur with intervening times in the given interval.

The manager has input action TICK, output action GRANT and internal action ELSE.
The manager waits a particular number k of clock ticks before issuing each GRANT, count-
ing from the beginning or from the last preceding GRANT. The manager's state has one
component: TIMER, holding an integer, initially k.

The manager's algorithm is as follows: (We assume that k > 0).

TICK
Effect:

TIMER := TIMER-

GRANT
Pireuozidi~ioni:

TIMER < 0
Effect:

I1MER := k
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ELSE
Precondition:

TIMER > 0
Effect:

none

Notice that ELSE is enabled exactly when GRANT is not enabled. The effect of inclidiiig
the ELSE action is to ensure that the automaton continues taking steps at its own pace, at
approximately regular intervals. Thus, in the situation we are modeling, when the GRANT
action's precondition becomes satisfied, the action doesn't occur instantly - the action waits
until the automaton's next local step occurs. 1

The partition groups the GRANT and ELSE actions into a single equivalence class, with
which the boundmap associates the interval [0, 1]. We assume that cl > !. 2 Now' we fix L to
be the timed automaton which is the composition of the clock and manager.

I now consider the automaton time(L), constructed as described in Section 5.2. In this
case, the construction adds the following components to the state of L: Ctime, Ftime(TICK),
Ltime(TICK), Ftime(LOCAL), and Ltime(LOCAL). The latter two represent the times for
the partition class consisting of GRANT and ELSE.

Lemma 6 All complete executions (and therefore all complete schedules) of time(L) are-infi-
nite.

This is essentially because the clock keeps ticking forever. This lemma tells us that for this
example we do not have to worry about the case where executions are finite - we canassume
that we have infinite executions in which (because of the definition of completeness) the timing
component is unbounded.

5.4 The Performance Automaton

We wish to show that all the timed behaviors of L satisfy certain upper and lower bounds
on the time for the first GRANT and the time between consecutive pairs of GRANT events.
More precisely, we wish to show the following, for any timed behavior 7 of B:

1. 2here are infinitely many GRANT events in 7.

2. If t is the time of the first GRANT event in 7, then k cl < t < k C2 + I

2An alternative situation to model would be an interrupt-driven mode! in which the action is triggered to
occur whenever its precondition becomes true; the action should then occur shortly thereafter; this situation.
could be modeled by omitting the ELSE action. The two automata have slightly different timing properties.
In this paper, I only consider the first assumption.

2Agair,, a different assumption would change the timing analysis.

22



3. If t, and t2 are the times of any two consecutive GRANT events in 7, then

k . cl - I < t2 - t1 :_ k . C2 + l.

We let P denote the set of sequences of (action, time) pairs satisfying the above three condi-
tions. By the earlier characterization, Theorem 4, it suffices to show that all complete behaviors
of time(L) are in P.

I have already shown how to describe timing assumptions by building time information
into the state. Now I show how to give a similar description for the timing properties to be
proved. Thus, we specify P in terms of another I/O automaton, which we call the performance
automaton. Namely, define a new I/O automaton H by augmenting time(L) with two new
components: Ftime(GRANT) and Ltime(GRANT). These are designed to represent the first
and last times, respectively, that a GRANT event might occur. They are maintained as follows.

1. Initially,

(a) Ftime(GRANT) = k .cl, and

(b) Ltime(GRANT) = k c2 + I.

2. For each step (s , (GRANT, t),s) of H,

(a) s'.Ftime(GRANT) < t < s'.Ltime(GRANT).

(b) s.Ftime(GRANT) = t + N' . cl - I and s.Ltime(GRANT) = t + k . c2 + 1.

3. For each step (s', (7r, t), s) of H, where 7r = TICK or ELSE,

(a) t < s'.Ltime(GRANT).

(b) s.Ltime(GRANT) = s'.Ltime(GRANT) and

(c) s.Ftime(GRANT) = s'.Ftime( GRANT).

In addition, the other components of the state are maintained just as in the definitions of
time(L).

This automaton simply builds in explicitly the time bounds to be proved. The initial
conditions build in the time bounds that are supposed to hold for the first GRANT, and
condition 2b builds in the time bounds that are supposed to hold for all the subsequent GRANT
actions. Conditions 2a and 3a ensure that nothing happens strictly after the latest time at
which a GRANT is supposed to occur. Condition 2a also ensures that the GRANT does not
occur too soon.

The following lemma gives the relationship we need between the behaviors of H and the
condition P. (Note that the behaviors of H and the sequences in P both consist of elements
that are pairs, an action of L together with a time.)
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Lemma 7 Let 03 be an infinite schedule of H in which the time component is unbounded. Then
beh(P3) E P.

Note that the performance machine h1 is a somewhat ad hoc description of the particular
timing properties to be pro ed £or our particular algorithm. 'We are currently working on
generalizing the treatment of performance machines.

5.5 Proof

Now we sketch how to prove that all timed behaviors of L are in P., as needed. First, we show
that all behaviors of tinte(L) are also behaviors of the performance machine H, using a strong
possibilitieb mapping. Namely, vie define a mapping f so that a state u of H is in the image
set f(s) exactly if the following conditions hold.

1. If s.TiMER > 0 then

(a) u.Ltime(GRANT) > s.Ltimp(TICK) + (s.TIMEIR - l)c2 + 1, and
(b) u.Ftime(GRANT) <s.Ftime(TICK) + (s.TIMER-- 1)cj.

2. If s.TIM ER = 0 then

(a) u.Ltime(GlRANT) s.Ltime(LOCAL), and

(b) u.1time( GRANT) < s.Ctime.

Thus, in this case the nia;)ping takes the form of inequalities giving upper and lower bounds
for the time of the next GRANT event, in terms of the values of the variables in the state of
i:me(I). For exarr.pi,-, condition la says that (in case the timer i positive), the upper bound
that is being proved on the time for the next GRANT is any value that is at least as great as
the latest time for the next TICK, plus the number of rrimaining TICK events that uill be
counted times the inaximum time they might take, plus the maxinum time for a local step.
This makes sense because the quantity on the right-hand side of the inequality is itself an upper
boand on the titmw until the next GRANT; if the performance machine designates anything at
least as great as this expression as the upper bound to be proved, then it should be possible to
prove that the algorithm simulates the performance machine (i.e., that it respects the upper
bound described by that machine).

Synimetrically, condition lb says that (in case the timer is positive) the lower bound that
is being proved on the time for the next GRANT is any value that is at most as great as the
earliest time for the next TWCK, plus the number of remaining ticks that will be counted times
the minimum time they mIght take, (plus the minimum tinie for a local step, which is 0).
This makes sense because the quantity on the right-hand side of the inequality is itself a lower
bound on the time until the next GRANT; if the performance machine designates anything at
most as great 's this expression as the lower bound to be proved, then it should be possible
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tu prove that the algorithm simulates the performance machine (i.e., that it respects the lower

bound described by that machine).

In case the timer is 0, the upper bound that is being proved on the time for the next
GRANT is any value that is at least as great as the latest time for the next local step. Again,
the quantity on the right-hand side of the inequality is an upper bound on the time until the
next GRANT, so that if the performance machine designates anything at least that large, it
should be possible to prove that the algorithm simulates the performance machine. Also for
this case, the lower bound that is being proved is any value that is at most as great as the
earliest time or the next local step, which is the current time.

This mapping is obviously imltivalued, because it is described in terms of inequalities. The
inequalities express the fact that any sufficiently large number (with respect to the values of
the variables in the state of time(L)) should be provable as an upper bound for the time for
the next GRANT, and any sufficiently small number should be provable as a lower bound. 3
4 We can now show:

Lemma 8 The mapping f is a strong possibilities mapping.

Lemmas 5 and 8 yield the following corollary.

Corollary 9 All schedules of time(L) are schedules of H.

Now I can put the pieces together.

Theorem 10 All timed behaviors of L are in P.

Proof: Let -' be a timed behavior of L. Then by Theorem 4, ' is a complete behavior of
time(L). Let /3 be a complete schedule of time(L) such that - = beh(/3). By Lemma 6, /3 is
infirite, and by the definition of completeness for infinite executions, the time components of/3
are unbounded. Lemma 9 implies that )3 is also a schedule of H. Since/3 is an infinite schedule
of H in which the time components are unbounded, Lemma 7 implies that beh(/3) = -1 is in P.
U

31f we simply replaced the inequalities with equations, the resulting mapping would not be a possibilities
mapping. For example, suppose that a clock tick occurs within less than the maximum c2. Then the right-
hand side expre3sion in la would evaluate after the step to an earlier time than before the step. On the other
hand, the corresponding step in the performdnce machine would not change the value of Lttme(GRANT); the
correspondence thus would not be preserved.

4It seems possible to use a single-valued mapping for this example by complicating the definition of the
performarce machine; however, bince the performance machine is serving as the problem specification, that
does not seem like a good idea.
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Note that in this case, the possibilities mapping technique yields all the correctness prop-
erties we require - including both safety aid liveness properties. Certain timing properties are
safety properties, e.g., lower bounds, and upper bounds of the form "if time grows sufficiently
large, then certain events must occur". These can be proved using possibilities mappings in
much the same way as any other safety properties. But when such conditions are combined
with the property that all complete executions are infinite and our assumption that the time in
infinite timed executions is unbounded (so that "time continues to increase without bound'),
they actually imply that the events in question must eventually occur. Thus, liveness properties
of the kind that say "certain events must occur" also follow from the mapping technique.

6 Conclusions

In this paper, I have tried to illustrate several situations in which multivalued abstraction
mappings are useful in algorithm correctness proofs. Multivalued mappings are useful in cases
where one algorithm can be described as an optimized (e.g., garbage collected) version of
another algorithm, or where a single high-level algorithm admits several specialized implemen-
tations tailored for different situations. They are also useful in relating distributed algorithms
to centralized variants, and in proving time bounds.

Work remains to be done in exploiting these techniques further. I believe it will be possible
to decompose the proofs of many other complicated concurrent algorithms by expressing- the
algorithms as optimized versions of simpler algorithms, or as special cases of more general
algorithms, or as distributed versions of centralized algorithms. It remains to discover such
structure and express it in terms of mappings.

The use of mappings for time analysis is new, and should be tried on more (and larger)
examples. It remains to see how this technique combines with other methods for time analysis
such as methods based on bounded temporal logic [5] or recurrence equations [16]. I hope I
have made the point I have tried to make: that multivalued mappings are sufficiently useful
that any useful formal framework incorporating ab -,'ion mappings should permit them to
be multivalued.
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A Proof

Proof: By induction. For the base, let s be the start state of L and u the start state of
H. First, s.QS is empty. Also, [u.IS, u.LS] = [1,0], which implies that s.QS is equal to the
appropriate (empty) portion of u.SS. Second, s.FS = 1 = u.ISmod2. Third, s.QR is empty,
and [u.LR + 1, u.IR] = [1, 0], which implies that s.QR is equal to the appropriate portion of
u.SR. Fourth, s.FR = 0 and u.IR = 0, which is as needed. Fifth and sixth, both channels are
empty.

Now show the inductive step. Suppose (S,, r, s) is a step of L and u' E f(s'). We consider
cases based on 7r.

1. 7 = SEND(m)

Choose u to be the unique state such that (u , r, u) is a step of H. We must show that
u E f(s). The only condition that is affected by the step is the first; thus, we must show
that s.QS is exactly the sequence of values of u.SS corresponding to indices in the closed
interval [u.IS, u.LS]. But s.QS = s'.QSm. Since u' E f(s'), s'.QS is just the sequence of
values from u'.SS, from indices u'.IS to u'.LS. Since the step of H increases LS by 1 and
puts m in the new position, we have the needed equation.

2. ir = RECEIVE(m)

Since 7r is enabled in s', m is the first value on s'.QR. Since u' E f(s3), m = u'.SR(u'.LR+
1), which implies that ir is enabled in u'. Now choose u to be the unique state such that
(u', 7r, u) is a step of H. All conditions are unaffected except for the third, that s.QR
is exactly the sequence of values of u.SR corresponding to indices in the closed interval
[u.LR + 1, u.IR]. Now, s.QR is the same as s'.QR with the first element removed. Since
U' E f(s'), we have that s'.QR is just the sequence of values from u'.SR, from indices
u'.LR + 1 to u'.IR. Since the step of H increases LR by 1, we have the needed equation.

3. r = SENDI(m,b)

Since 7r is enabled in s' , b = s'.FS and m is the first element on s'.QS. Let i be the
integer u'.IS. Since u' E f(s'), the first element in sl.QS is the same as the u'.IS entry
in u'.SS; that is, u'.SS(i) = m. It follows that T = SEND1(m,i) is enabled in u'.

Now choose u so that (u, f, u) is a step of H and such that this step puts a message
in channell exactly if the step (sW ',r,s) does. We must show that u E f(s). The only
interesting condition is the fifth; that is, we must show that channell has the same number
of messages in s and u. Moreover, for any j, if (m, k) is the jih message in channell in

u, then (i, k mod 2) is the jth message in channell in s. The only interesting case is
where both steps cause a message to be put into t)he channel. Then the message value
in both cases is m, but the tag is b for algorithm L and i for H. It remains to show that
b = imod2. But b = s'.FS and i = u'.IS. Since u' E f(s'), we have R' FS = u'.ISmod2,
which implies the result.
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,.. --"RCEIVEI(m, b)

ce r w enabled in s', (m, b) is the first element in channell in s'. Since u' E f(s'),
On ,is the first element in channell in u', for some integer i with b = imod2. Let
7r -ECEIVE1(m, i); then Tr is enabled in u'. Let u be the unique state such that
(u', t) is a step of H. We must show that u E f(s).

All ',),ditions except for the third, fourth and fifth are unchanged. It is easy to see

that r e fifth is preserved, since each of ir and i simply removes the first message from
chaito ell.

Supprose first that b = s'.FR. Then the effects of 7r imply that the receiver state in s is

ideiJ't . to that in s'. Now, since u' E f(s'), s'.FR = u'.IRmod 2; since b = imod 2, this
case must have i 0 u'.IR + 1. Then the effects of i imply that the receiver state in u is

identica: to that in u'. It is immediate that the third and fourth conditions hold.

So now suppose that b 5 s'.FR. The invariant above for H implies that either i = u'.IR
or i = u'.IR + 1. Since b = i mod 2 and (since u' E f(s')) s'.FR = u'.IRmod 2, this case
must have i = u'.IR + 1. Then u.IR = u'.IR + 1 and s.FR = s'.FR + 1 mod 2, preserving
the fourt- ondition. Also, u.SR is the same as u'.SR except that the entry with index
u.IR is set equal to m; moreover, s.QR is the same as s'.QR except that m is added to
the end. it follows that the third condition is preserved.

5. ir = SEND2(b)

Since 7r is enabled in s', b = s'.FR. Let i be the integer u'.IR. Let Tr = SEND2(i);
clearly, fr is enabled in u'.

Now choose u so that (u, i, u) is a step of H and such that this step puts a message
in channel2 exactly if the step (s', r, s) does. We must show that u E f(s). The only
interesting condition is the sixth; that is, we must show that channel2 has the same
number of messages in s and u. Moreover, for any j, if k is the jth message in channel2
in u, then kmod 2 is the jth message in channel2 in s. The only interesting case is where
both steps cause a message to be put into the channel. Then the tag is b for algorithm
L and i for H. It remains to show that b = imod2. But b = s'.FR and i = u'.IR. Since
U' E f(s'), we have s'.FR = u'.IRmod 2, which implies the result.

6. 7r = RECEIVE2(b)

Since 7r is enabled in s', b is the first element in channel2 in s'. Since u' E f(s'), i is the first
element in channel2 in u', for some integer i with b = imod2. Let T = RECEIVE2(i);
then r is enabled in u'. Let u be the unique state such that (u', f, u) is a step of H. We
must show that u E f(s).

All conditions except for the first, second and sixth are unchanged. It is easy to see
that the sixth is preserved, snc, ,ah of 7r and .*, srnil ramo,,S fthi, first mesagefro
channel2.

Suppose first that b 5 s'.FS. Then the effects of 7r imply that the sender state in s is
identical to that in s'. Now, since u' E f(s'), s'.FS = u'.ISmod2; since b = imod2,
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this case must have i 0 u'.IS. Then the effects of f imply that the sender state in u is
identical to that in u'. It is immediate that the first and second conditions hold for this
situation.

So now suppose that b = s'.FS. The invariant above for H implies that either i = u'.IS- 1
or i = u'.IS. Since b = i mod 2 and (since u' E f(s')) s'.FS = u'.IS mod 2, this case must
have i = u'.IS. Then u.IS = u'.IS + 1 and s.FS = s'.FS + 1 mod 2, preserving the second
condition. Also, u.SS is unchanged; moreover, s.QS is the same as same as s'.QS except
that the first entry (if any) is removed.

Now, the invariant for H and the fact that the first entry in channel2 in u' has index u'.IS
implies that u'.IS = u'.IR. Again by the invariant for H, this implies that u'.LS > u'.IS.
Then the fact that u' E f(s') implies that s'.QS is nonempty. Therefore, the first entry
in s'.QS really is removed by the step. Since s'.QS consists of the entries in u'.SS, from
indices u'.IS to u'.LS, since the first entry in s'.QS is removed to yield s.QS and since
u.IS = u'.IS + 1, it follows that the first condition is preserved.
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